Build A Stock Prediction Web App In Python
In this tutorial we build a stock prediction web app in Python using streamlit, Yahoo finance, and Facebook Prophet.
#more
In this tutorial we build a stock prediction web app in Python using streamlit, Yahoo finance, and Facebook Prophet.
Resources:¶
Credits:¶
Installation¶
We need to install streamlit, Facebook prophet, yfinance, and plotly. Run this in your terminal:
$ pip install streamlit fbprophet yfinance plotly
The Code¶
Thanks to streamlit it does not require a lot of code to implement a nice looking web app. This is the whole code:
import streamlit as st
from datetime import date
import yfinance as yf
from fbprophet import Prophet
from fbprophet.plot import plot_plotly
from plotly import graph_objs as go
START = "2015-01-01"
TODAY = date.today().strftime("%Y-%m-%d")
st.title('Stock Forecast App')
stocks = ('GOOG', 'AAPL', 'MSFT', 'GME')
selected_stock = st.selectbox('Select dataset for prediction', stocks)
n_years = st.slider('Years of prediction:', 1, 4)
period = n_years * 365
@st.cache
def load_data(ticker):
data = yf.download(ticker, START, TODAY)
data.reset_index(inplace=True)
return data
data_load_state = st.text('Loading data...')
data = load_data(selected_stock)
data_load_state.text('Loading data... done!')
st.subheader('Raw data')
st.write(data.tail())
# Plot raw data
def plot_raw_data():
fig = go.Figure()
fig.add_trace(go.Scatter(x=data['Date'], y=data['Open'], name="stock_open"))
fig.add_trace(go.Scatter(x=data['Date'], y=data['Close'], name="stock_close"))
fig.layout.update(title_text='Time Series data with Rangeslider', xaxis_rangeslider_visible=True)
st.plotly_chart(fig)
plot_raw_data()
# Predict forecast with Prophet.
df_train = data[['Date','Close']]
df_train = df_train.rename(columns={"Date": "ds", "Close": "y"})
m = Prophet()
m.fit(df_train)
future = m.make_future_dataframe(periods=period)
forecast = m.predict(future)
# Show and plot forecast
st.subheader('Forecast data')
st.write(forecast.tail())
st.write(f'Forecast plot for {n_years} years')
fig1 = plot_plotly(m, forecast)
st.plotly_chart(fig1)
st.write("Forecast components")
fig2 = m.plot_components(forecast)
st.write(fig2)
Run the application¶
To start the app, run
$ streamlit run main.py
where main.py
should be the name of your file in this case.
FREE VS Code / PyCharm Extensions I Use
✅ Write cleaner code with Sourcery, instant refactoring suggestions: Link*
Python Problem-Solving Bootcamp
🚀 Solve 42 programming puzzles over the course of 21 days: Link*