Tensorboard - PyTorch Beginner 16
In this part we will learn about the TensorBoard and how we can use it to visualize and analyze our models.
Learn all the basics you need to get started with this deep learning framework! In this part we will learn about the TensorBoard and how we can use it to visualize and analyze our models. TensorBoard is a visualization toolkit that provides the visualization and tooling needed for machine learning experimentation:
We will learn: - How to install and use the TensorBoard in Pytorch - How to add images - How to add a model graph - How to visualize loss and accuracy during training - How to plot precision-recall curves
All code from this course can be found on GitHub.
Further readings¶
How to Log for Tensorboard¶
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
############## TENSORBOARD ########################
import sys
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
# default `log_dir` is "runs" - we'll be more specific here
writer = SummaryWriter('runs/mnist1')
###################################################
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Hyper-parameters
input_size = 784 # 28x28
hidden_size = 500
num_classes = 10
num_epochs = 1
batch_size = 64
learning_rate = 0.001
# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = torchvision.datasets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor())
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
examples = iter(test_loader)
example_data, example_targets = examples.next()
for i in range(6):
plt.subplot(2,3,i+1)
plt.imshow(example_data[i][0], cmap='gray')
#plt.show()
############## TENSORBOARD ########################
img_grid = torchvision.utils.make_grid(example_data)
writer.add_image('mnist_images', img_grid)
#writer.close()
#sys.exit()
###################################################
# Fully connected neural network with one hidden layer
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNet, self).__init__()
self.input_size = input_size
self.l1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.l2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.l1(x)
out = self.relu(out)
out = self.l2(out)
# no activation and no softmax at the end
return out
model = NeuralNet(input_size, hidden_size, num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
############## TENSORBOARD ########################
writer.add_graph(model, example_data.reshape(-1, 28*28))
#writer.close()
#sys.exit()
###################################################
# Train the model
running_loss = 0.0
running_correct = 0
n_total_steps = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# origin shape: [100, 1, 28, 28]
# resized: [100, 784]
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
running_correct += (predicted == labels).sum().item()
if (i+1) % 100 == 0:
print (f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}')
############## TENSORBOARD ########################
writer.add_scalar('training loss', running_loss / 100, epoch * n_total_steps + i)
writer.add_scalar('accuracy', running_correct / 100, epoch * n_total_steps + i)
running_correct = 0
running_loss = 0.0
###################################################
# Test the model
# In test phase, we don't need to compute gradients (for memory efficiency)
class_labels = []
class_preds = []
with torch.no_grad():
n_correct = 0
n_samples = 0
for images, labels in test_loader:
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
outputs = model(images)
# max returns (value ,index)
values, predicted = torch.max(outputs.data, 1)
n_samples += labels.size(0)
n_correct += (predicted == labels).sum().item()
class_probs_batch = [F.softmax(output, dim=0) for output in outputs]
class_preds.append(class_probs_batch)
class_labels.append(predicted)
# 10000, 10, and 10000, 1
# stack concatenates tensors along a new dimension
# cat concatenates tensors in the given dimension
class_preds = torch.cat([torch.stack(batch) for batch in class_preds])
class_labels = torch.cat(class_labels)
acc = 100.0 * n_correct / n_samples
print(f'Accuracy of the network on the 10000 test images: {acc} %')
############## TENSORBOARD ########################
classes = range(10)
for i in classes:
labels_i = class_labels == i
preds_i = class_preds[:, i]
writer.add_pr_curve(str(i), labels_i, preds_i, global_step=0)
writer.close()
###################################################
FREE VS Code / PyCharm Extensions I Use
✅ Write cleaner code with Sourcery, instant refactoring suggestions: Link*
Python Problem-Solving Bootcamp
🚀 Solve 42 programming puzzles over the course of 21 days: Link*