Skip to content

Convolutional Neural Network (CNN) - PyTorch Beginner 14

In this part we will implement our first convolutional neural network (CNN) that can do image classification based on the famous CIFAR-10 dataset.


Learn all the basics you need to get started with this deep learning framework! In this part we will implement our first convolutional neural network (CNN) that can do image classification based on the famous CIFAR-10 dataset.

We will learn: - Architecture of CNNs - Convolutional Filter - Max Pooling - Determine the correct layer size - Implement the CNN architecture in PyTorch

All code from this course can be found on GitHub.

CNN in PyTorch

Note: The CNN architecture in this tutorial is taken from the famous LeNet-5 architecture. You can read more about this here

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np

# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Hyper-parameters 
num_epochs = 5
batch_size = 4
learning_rate = 0.001

# dataset has PILImage images of range [0, 1]. 
# We transform them to Tensors of normalized range [-1, 1]
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# CIFAR10: 60000 32x32 color images in 10 classes, with 6000 images per class
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)

test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size,
                                          shuffle=True)

test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size,
                                         shuffle=False)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

def imshow(img):
    img = img / 2 + 0.5  # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


# get some random training images
dataiter = iter(train_loader)
images, labels = dataiter.next()

# show images
imshow(torchvision.utils.make_grid(images))

class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # -> n, 3, 32, 32
        x = self.pool(F.relu(self.conv1(x)))  # -> n, 6, 14, 14
        x = self.pool(F.relu(self.conv2(x)))  # -> n, 16, 5, 5
        x = x.view(-1, 16 * 5 * 5)            # -> n, 400
        x = F.relu(self.fc1(x))               # -> n, 120
        x = F.relu(self.fc2(x))               # -> n, 84
        x = self.fc3(x)                       # -> n, 10
        return x


model = ConvNet().to(device)

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

n_total_steps = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        # origin shape: [4, 3, 32, 32] = 4, 3, 1024
        # input_layer: 3 input channels, 6 output channels, 5 kernel size
        images = images.to(device)
        labels = labels.to(device)

        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)

        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (i+1) % 2000 == 0:
            print (f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}')

print('Finished Training')
PATH = './cnn.pth'
torch.save(model.state_dict(), PATH)

with torch.no_grad():
    n_correct = 0
    n_samples = 0
    n_class_correct = [0 for i in range(10)]
    n_class_samples = [0 for i in range(10)]
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        # max returns (value ,index)
        _, predicted = torch.max(outputs, 1)
        n_samples += labels.size(0)
        n_correct += (predicted == labels).sum().item()

        for i in range(batch_size):
            label = labels[i]
            pred = predicted[i]
            if (label == pred):
                n_class_correct[label] += 1
            n_class_samples[label] += 1

    acc = 100.0 * n_correct / n_samples
    print(f'Accuracy of the network: {acc} %')

    for i in range(10):
        acc = 100.0 * n_class_correct[i] / n_class_samples[i]
        print(f'Accuracy of {classes[i]}: {acc} %')

FREE VS Code / PyCharm Extensions I Use

✅ Write cleaner code with Sourcery, instant refactoring suggestions: Link*


Python Problem-Solving Bootcamp

🚀 Solve 42 programming puzzles over the course of 21 days: Link*

* These are affiliate link. By clicking on it you will not have any additional costs. Instead, you will support my project. Thank you! 🙏