Naive Bayes in Python - ML From Scratch 05
Implement the Naive Bayes algorithm, using only built-in Python modules and numpy, and learn about the math behind this popular ML algorithm.
In this Machine Learning from Scratch Tutorial, we are going to implement the Naive Bayes algorithm, using only built-in Python modules and numpy. We will also learn about the concept and the math behind this popular ML algorithm.
All algorithms from this course can be found on GitHub together with example tests.
Further readings:¶
https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c
Implementation¶
import numpy as np
class NaiveBayes:
def fit(self, X, y):
n_samples, n_features = X.shape
self._classes = np.unique(y)
n_classes = len(self._classes)
# calculate mean, var, and prior for each class
self._mean = np.zeros((n_classes, n_features), dtype=np.float64)
self._var = np.zeros((n_classes, n_features), dtype=np.float64)
self._priors = np.zeros(n_classes, dtype=np.float64)
for idx, c in enumerate(self._classes):
X_c = X[y==c]
self._mean[idx, :] = X_c.mean(axis=0)
self._var[idx, :] = X_c.var(axis=0)
self._priors[idx] = X_c.shape[0] / float(n_samples)
def predict(self, X):
y_pred = [self._predict(x) for x in X]
return np.array(y_pred)
def _predict(self, x):
posteriors = []
# calculate posterior probability for each class
for idx, c in enumerate(self._classes):
prior = np.log(self._priors[idx])
posterior = np.sum(np.log(self._pdf(idx, x)))
posterior = prior + posterior
posteriors.append(posterior)
# return class with highest posterior probability
return self._classes[np.argmax(posteriors)]
def _pdf(self, class_idx, x):
mean = self._mean[class_idx]
var = self._var[class_idx]
numerator = np.exp(- (x-mean)**2 / (2 * var))
denominator = np.sqrt(2 * np.pi * var)
return numerator / denominator
FREE VS Code / PyCharm Extensions I Use
✅ Write cleaner code with Sourcery, instant refactoring suggestions: Link*
Python Problem-Solving Bootcamp
🚀 Solve 42 programming puzzles over the course of 21 days: Link*